Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex.

Identifieur interne : 000062 ( Main/Exploration ); précédent : 000061; suivant : 000063

Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex.

Auteurs : Tomas Malinauskas [Royaume-Uni] ; Tina V. Peer [Allemagne] ; Benjamin Bishop [Royaume-Uni] ; Thomas D. Mueller [Royaume-Uni] ; Christian Siebold [Royaume-Uni]

Source :

RBID : pubmed:32576689

Descripteurs français

English descriptors

Abstract

Repulsive guidance molecules (RGMs) are cell surface proteins that regulate the development and homeostasis of many tissues and organs, including the nervous, skeletal, and immune systems. They control fundamental biological processes, such as migration and differentiation by direct interaction with the Neogenin (NEO1) receptor and function as coreceptors for the bone morphogenetic protein (BMP)/growth differentiation factor (GDF) family. We determined crystal structures of all three human RGM family members in complex with GDF5, as well as the ternary NEO1-RGMB-GDF5 assembly. Surprisingly, we show that all three RGMs inhibit GDF5 signaling, which is in stark contrast to RGM-mediated enhancement of signaling observed for other BMPs, like BMP2. Despite their opposite effect on GDF5 signaling, RGMs occupy the BMP type 1 receptor binding site similar to the observed interactions in RGM-BMP2 complexes. In the NEO1-RGMB-GDF5 complex, RGMB physically bridges NEO1 and GDF5, suggesting cross-talk between the GDF5 and NEO1 signaling pathways. Our crystal structures, combined with structure-guided mutagenesis of RGMs and BMP ligands, binding studies, and cellular assays suggest that RGMs inhibit GDF5 signaling by competing with GDF5 type 1 receptors. While our crystal structure analysis and in vitro binding data initially pointed towards a simple competition mechanism between RGMs and type 1 receptors as a possible basis for RGM-mediated GDF5 inhibition, further experiments utilizing BMP2-mimicking GDF5 variants clearly indicate a more complex mechanism that explains how RGMs can act as a functionality-changing switch for two structurally and biochemically similar signaling molecules.

DOI: 10.1073/pnas.2000561117
PubMed: 32576689
PubMed Central: PMC7354924


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex.</title>
<author>
<name sortKey="Malinauskas, Tomas" sort="Malinauskas, Tomas" uniqKey="Malinauskas T" first="Tomas" last="Malinauskas">Tomas Malinauskas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom; tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peer, Tina V" sort="Peer, Tina V" uniqKey="Peer T" first="Tina V" last="Peer">Tina V. Peer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bishop, Benjamin" sort="Bishop, Benjamin" uniqKey="Bishop B" first="Benjamin" last="Bishop">Benjamin Bishop</name>
<affiliation wicri:level="4">
<nlm:affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Thomas D" sort="Mueller, Thomas D" uniqKey="Mueller T" first="Thomas D" last="Mueller">Thomas D. Mueller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg</wicri:regionArea>
<wicri:noRegion>97082 Würzburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siebold, Christian" sort="Siebold, Christian" uniqKey="Siebold C" first="Christian" last="Siebold">Christian Siebold</name>
<affiliation wicri:level="4">
<nlm:affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom; tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32576689</idno>
<idno type="pmid">32576689</idno>
<idno type="doi">10.1073/pnas.2000561117</idno>
<idno type="pmc">PMC7354924</idno>
<idno type="wicri:Area/Main/Corpus">000107</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000107</idno>
<idno type="wicri:Area/Main/Curation">000107</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000107</idno>
<idno type="wicri:Area/Main/Exploration">000107</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex.</title>
<author>
<name sortKey="Malinauskas, Tomas" sort="Malinauskas, Tomas" uniqKey="Malinauskas T" first="Tomas" last="Malinauskas">Tomas Malinauskas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom; tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peer, Tina V" sort="Peer, Tina V" uniqKey="Peer T" first="Tina V" last="Peer">Tina V. Peer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bishop, Benjamin" sort="Bishop, Benjamin" uniqKey="Bishop B" first="Benjamin" last="Bishop">Benjamin Bishop</name>
<affiliation wicri:level="4">
<nlm:affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mueller, Thomas D" sort="Mueller, Thomas D" uniqKey="Mueller T" first="Thomas D" last="Mueller">Thomas D. Mueller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg</wicri:regionArea>
<wicri:noRegion>97082 Würzburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siebold, Christian" sort="Siebold, Christian" uniqKey="Siebold C" first="Christian" last="Siebold">Christian Siebold</name>
<affiliation wicri:level="4">
<nlm:affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom; tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bone Morphogenetic Protein 2 (metabolism)</term>
<term>Bone Morphogenetic Protein 2 (ultrastructure)</term>
<term>Cell Adhesion Molecules, Neuronal (metabolism)</term>
<term>Cell Adhesion Molecules, Neuronal (ultrastructure)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>GPI-Linked Proteins (metabolism)</term>
<term>GPI-Linked Proteins (ultrastructure)</term>
<term>Growth Differentiation Factor 5 (metabolism)</term>
<term>Growth Differentiation Factor 5 (ultrastructure)</term>
<term>Hemochromatosis Protein (metabolism)</term>
<term>Hemochromatosis Protein (ultrastructure)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Membrane Proteins (ultrastructure)</term>
<term>Nerve Tissue Proteins (metabolism)</term>
<term>Nerve Tissue Proteins (ultrastructure)</term>
<term>Protein Domains (MeSH)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Recombinant Proteins (ultrastructure)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Facteur-5 de croissance et de différenciation (métabolisme)</term>
<term>Facteur-5 de croissance et de différenciation (ultrastructure)</term>
<term>Molécules d'adhérence cellulaire neuronale (métabolisme)</term>
<term>Molécules d'adhérence cellulaire neuronale (ultrastructure)</term>
<term>Protéine de l'hémochromatose (métabolisme)</term>
<term>Protéine de l'hémochromatose (ultrastructure)</term>
<term>Protéine morphogénétique osseuse de type 2 (métabolisme)</term>
<term>Protéine morphogénétique osseuse de type 2 (ultrastructure)</term>
<term>Protéines de tissu nerveux (métabolisme)</term>
<term>Protéines de tissu nerveux (ultrastructure)</term>
<term>Protéines liées au GPI (métabolisme)</term>
<term>Protéines liées au GPI (ultrastructure)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Protéines membranaires (ultrastructure)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines recombinantes (ultrastructure)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bone Morphogenetic Protein 2</term>
<term>Cell Adhesion Molecules, Neuronal</term>
<term>GPI-Linked Proteins</term>
<term>Growth Differentiation Factor 5</term>
<term>Hemochromatosis Protein</term>
<term>Membrane Proteins</term>
<term>Nerve Tissue Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Bone Morphogenetic Protein 2</term>
<term>Cell Adhesion Molecules, Neuronal</term>
<term>GPI-Linked Proteins</term>
<term>Growth Differentiation Factor 5</term>
<term>Hemochromatosis Protein</term>
<term>Membrane Proteins</term>
<term>Nerve Tissue Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur-5 de croissance et de différenciation</term>
<term>Molécules d'adhérence cellulaire neuronale</term>
<term>Protéine de l'hémochromatose</term>
<term>Protéine morphogénétique osseuse de type 2</term>
<term>Protéines de tissu nerveux</term>
<term>Protéines liées au GPI</term>
<term>Protéines membranaires</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Facteur-5 de croissance et de différenciation</term>
<term>Molécules d'adhérence cellulaire neuronale</term>
<term>Protéine de l'hémochromatose</term>
<term>Protéine morphogénétique osseuse de type 2</term>
<term>Protéines de tissu nerveux</term>
<term>Protéines liées au GPI</term>
<term>Protéines membranaires</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Protein Domains</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Domaines protéiques</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Repulsive guidance molecules (RGMs) are cell surface proteins that regulate the development and homeostasis of many tissues and organs, including the nervous, skeletal, and immune systems. They control fundamental biological processes, such as migration and differentiation by direct interaction with the Neogenin (NEO1) receptor and function as coreceptors for the bone morphogenetic protein (BMP)/growth differentiation factor (GDF) family. We determined crystal structures of all three human RGM family members in complex with GDF5, as well as the ternary NEO1-RGMB-GDF5 assembly. Surprisingly, we show that all three RGMs inhibit GDF5 signaling, which is in stark contrast to RGM-mediated enhancement of signaling observed for other BMPs, like BMP2. Despite their opposite effect on GDF5 signaling, RGMs occupy the BMP type 1 receptor binding site similar to the observed interactions in RGM-BMP2 complexes. In the NEO1-RGMB-GDF5 complex, RGMB physically bridges NEO1 and GDF5, suggesting cross-talk between the GDF5 and NEO1 signaling pathways. Our crystal structures, combined with structure-guided mutagenesis of RGMs and BMP ligands, binding studies, and cellular assays suggest that RGMs inhibit GDF5 signaling by competing with GDF5 type 1 receptors. While our crystal structure analysis and in vitro binding data initially pointed towards a simple competition mechanism between RGMs and type 1 receptors as a possible basis for RGM-mediated GDF5 inhibition, further experiments utilizing BMP2-mimicking GDF5 variants clearly indicate a more complex mechanism that explains how RGMs can act as a functionality-changing switch for two structurally and biochemically similar signaling molecules.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32576689</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>117</Volume>
<Issue>27</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex.</ArticleTitle>
<Pagination>
<MedlinePgn>15620-15631</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.2000561117</ELocationID>
<Abstract>
<AbstractText>Repulsive guidance molecules (RGMs) are cell surface proteins that regulate the development and homeostasis of many tissues and organs, including the nervous, skeletal, and immune systems. They control fundamental biological processes, such as migration and differentiation by direct interaction with the Neogenin (NEO1) receptor and function as coreceptors for the bone morphogenetic protein (BMP)/growth differentiation factor (GDF) family. We determined crystal structures of all three human RGM family members in complex with GDF5, as well as the ternary NEO1-RGMB-GDF5 assembly. Surprisingly, we show that all three RGMs inhibit GDF5 signaling, which is in stark contrast to RGM-mediated enhancement of signaling observed for other BMPs, like BMP2. Despite their opposite effect on GDF5 signaling, RGMs occupy the BMP type 1 receptor binding site similar to the observed interactions in RGM-BMP2 complexes. In the NEO1-RGMB-GDF5 complex, RGMB physically bridges NEO1 and GDF5, suggesting cross-talk between the GDF5 and NEO1 signaling pathways. Our crystal structures, combined with structure-guided mutagenesis of RGMs and BMP ligands, binding studies, and cellular assays suggest that RGMs inhibit GDF5 signaling by competing with GDF5 type 1 receptors. While our crystal structure analysis and in vitro binding data initially pointed towards a simple competition mechanism between RGMs and type 1 receptors as a possible basis for RGM-mediated GDF5 inhibition, further experiments utilizing BMP2-mimicking GDF5 variants clearly indicate a more complex mechanism that explains how RGMs can act as a functionality-changing switch for two structurally and biochemically similar signaling molecules.</AbstractText>
<CopyrightInformation>Copyright © 2020 the Author(s). Published by PNAS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Malinauskas</LastName>
<ForeName>Tomas</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-4847-5529</Identifier>
<AffiliationInfo>
<Affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom; tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peer</LastName>
<ForeName>Tina V</ForeName>
<Initials>TV</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bishop</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mueller</LastName>
<ForeName>Thomas D</ForeName>
<Initials>TD</Initials>
<Identifier Source="ORCID">0000-0003-1862-7357</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Siebold</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-6635-3621</Identifier>
<AffiliationInfo>
<Affiliation>Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom; tomas@strubi.ox.ac.uk mueller@biozentrum.uni-wuerzburg.de christian@strubi.ox.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>C20724/A14414 </GrantID>
<Acronym>CRUK_</Acronym>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>C20724/A26752 </GrantID>
<Acronym>CRUK_</Acronym>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>203852/Z/16/2</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C525718">BMP2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055396">Bone Morphogenetic Protein 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015816">Cell Adhesion Molecules, Neuronal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C525893">GDF5 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058851">GPI-Linked Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055428">Growth Differentiation Factor 5</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C481006">HJV protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071020">Hemochromatosis Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009419">Nerve Tissue Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C522183">RGMA protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C560433">RGMB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C091279">neogenin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055396" MajorTopicYN="N">Bone Morphogenetic Protein 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015816" MajorTopicYN="N">Cell Adhesion Molecules, Neuronal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058851" MajorTopicYN="N">GPI-Linked Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055428" MajorTopicYN="N">Growth Differentiation Factor 5</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071020" MajorTopicYN="N">Hemochromatosis Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009419" MajorTopicYN="N">Nerve Tissue Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Neogenin</Keyword>
<Keyword MajorTopicYN="Y">Repulsive guidance molecule</Keyword>
<Keyword MajorTopicYN="Y">TGFβ/BMP signaling</Keyword>
<Keyword MajorTopicYN="Y">cell surface receptor</Keyword>
<Keyword MajorTopicYN="Y">structural biology</Keyword>
</KeywordList>
<CoiStatement>The authors declare no competing interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32576689</ArticleId>
<ArticleId IdType="pii">2000561117</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.2000561117</ArticleId>
<ArticleId IdType="pmc">PMC7354924</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Tissue Res. 1999 Apr;296(1):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10199971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Mar 24;10(11):1887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25801027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Aug 21;8(4):1146-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25127134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2013 Oct;140(19):4070-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24004951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 8;280(14):14122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15671031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2009 Sep 07;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19735544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2016 Dec 1;8(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27638177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2004 Feb;185(2):281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2004 Jun 1;103(11):4317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14982873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Pharmacol. 2016 Nov;6(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28203489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Genet. 2005 Apr;42(4):314-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2018 Jan;27(1):293-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29067766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2019 Oct;76(20):3939-3952</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31201464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 18;286(7):5157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Oct;62(Pt 10):1243-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17001101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2005 Aug;115(8):2187-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16075059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 May 30;19(9):1917-1928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 Jul 20;19(1):90-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2019;133:153-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30902251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2010 Apr 15;115(15):3136-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20065295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hematol. 2017 Nov;92(11):1204-1213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28815688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 May;38(5):531-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16604073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Apr 8;28(7):937-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Haematologica. 2016 May;101(5):e173-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26944476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 19;280(33):29820-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15975920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17472960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Jan;36(1):77-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Oct 3;31(19):3885-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22940691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2018 Apr;51:50-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29153705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):389-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19897400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1999 Feb 1;206(1):33-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2015 Sep 18;13:77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26385096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jul 5;341(6141):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23744777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AAPS J. 2015 Jul;17(4):930-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25896304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Nov;14(11):1617-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1996 Mar;12(3):315-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Jun;61(Pt 6):651-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15930615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2008 Jan 15;111(2):924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Regen Res. 2014 Oct 1;9(19):1708-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Regen Res. 2020 Aug;15(8):1432-1436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31997802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 4;370(6488):341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8047140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22505256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 5;7(1):10529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28874746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 15;277(7):4883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Jun 24;349(5):933-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2017 May;27(5):365-378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28007423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 Sep;17(1):58-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Hum Genet. 2014 Jun;22(6):726-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Apr 14;368(6472):639-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8145850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2009 Jul;137(1):176-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19303019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2005 Aug;115(8):2180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16075058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e46307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Sep 28;5(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20927405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2015 Jun;22(6):458-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25938661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793152</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Bavière</li>
<li>District de Basse-Franconie</li>
<li>Oxfordshire</li>
</region>
<settlement>
<li>Oxford</li>
<li>Wurtzbourg</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Malinauskas, Tomas" sort="Malinauskas, Tomas" uniqKey="Malinauskas T" first="Tomas" last="Malinauskas">Tomas Malinauskas</name>
</region>
<name sortKey="Bishop, Benjamin" sort="Bishop, Benjamin" uniqKey="Bishop B" first="Benjamin" last="Bishop">Benjamin Bishop</name>
<name sortKey="Mueller, Thomas D" sort="Mueller, Thomas D" uniqKey="Mueller T" first="Thomas D" last="Mueller">Thomas D. Mueller</name>
<name sortKey="Siebold, Christian" sort="Siebold, Christian" uniqKey="Siebold C" first="Christian" last="Siebold">Christian Siebold</name>
</country>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Peer, Tina V" sort="Peer, Tina V" uniqKey="Peer T" first="Tina V" last="Peer">Tina V. Peer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000062 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000062 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32576689
   |texte=   Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32576689" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020